
 

1 

 

Addressing Partial Identification in Climate Modeling and Policy Analysis 
 

Charles F. Manski 

Department of Economics and Institute for Policy Research 

Northwestern University 

 

Alan H. Sanstad 

Berkeley, California  

 

Stephen J. DeCanio 

Department of Economics (emeritus) 

University of California at Santa Barbara 

 

February 2, 2021  

 

 

 

Classification: Social sciences; economic sciences 

Keywords: Climate modeling, partial identification, decision-making 

 

  

  



 

2 

 

 

Abstract 

Numerical simulations of the global climate system provide inputs to integrated assessment modeling for 

estimating the impacts of greenhouse gas mitigation and other policies to address global climate change. 

While essential tools for this purpose, computational climate models are subject to considerable 

uncertainty, including inter-model “structural” uncertainty. Structural uncertainty analysis has 

emphasized simple or weighted averaging of the outputs of multi-model ensembles, sometimes with 

subjective Bayesian assignment of probabilities across models. However, choosing appropriate weights is 

problematic. To use climate simulations in integrated assessment, we propose instead framing climate 

model uncertainty as a problem of partial identification, or “deep” uncertainty. This terminology refers to 

situations in which the underlying mechanisms, dynamics, or laws governing a system are not completely 

known and cannot be credibly modeled definitively even in the absence of data limitations in a statistical 

sense. We propose the min-max regret (MMR) decision criterion to account for deep climate uncertainty 

in integrated assessment without weighting climate model forecasts. We develop a theoretical framework 

for cost-benefit analysis of climate policy based on MMR, and apply it computationally with a simple 

integrated assessment model. We suggest avenues for further research. 
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1. Introduction 

 

 Computational modeling of the global climate system provides a foundation for estimating the 

effects of greenhouse gas (GHG) mitigation and other policies on global climate change. Climate models 

project the future path of the climate as a function of trajectories of anthropogenic GHG emissions and 

other inputs.
*
They are used to predict the climatic and other impacts of altering emission trajectories by 

means of various GHG reduction policies, which in turn supports analysis of how to address the climate 

change problem. 

 Climate models aim to represent the immensely complicated climate system in a tractable manner. 

Scientific understanding of the climate, as developed over decades of research by many scholars around 

the world, is at this point remarkable in its scope and depth. It remains, however, incomplete, and 

continues to evolve. Hence, the construction and use of climate models entail choices by modelers 

regarding model elements that are not fully specified by physical theory or exactly determined by 

empirical evidence. Over time, different sets of choices have yielded different climate models 

 Researchers have sought to understand and quantify the uncertainties in climate models and the 

predictions that they yield. One primary approach is multi-model ensemble (MME) analysis of inter-

model structural choices (1). This paper offers a perspective on the uncertainties MME analysis seeks to 

address, from the vantage point of econometrics, decision theory, and energy policy analysis. We frame 

climate model uncertainty as a problem of partial identification, or “deep uncertainty.” This terminology 

refers to situations in which the underlying mechanisms governing a system are not completely known 

and cannot be credibly modeled definitively even in the absence of data limitations in a statistical sense. 

  The predictions yielded by a partially identified model of a system are set-valued rather than exact or 

probabilistic. Thus, partial identification generates what is referred to in various disciplines as 

                                                           
*
 This paper focuses on coupled atmospheric, ocean, and land-surface models; we follow the custom of using the 

term “climate model” to refer to these coupled systems. 
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“ambiguity,” “model uncertainty,” “deep uncertainty,” or “epistemic uncertainty.” Study of partial 

identification has origins mainly in econometrics, which applies statistical methods to study economic 

phenomena. In this field, partial identification refers to circumstances in which the probability distribution 

governing a stochastic system is not completely known theoretically and its unknown aspects cannot be 

fully learned empirically even in the absence of data limitations in the sense of statistical imprecision. In 

the limit case where these unknown aspects can be fully learned empirically given sufficient data, the 

probability distribution is said to be point identified or simply identified. 

The fundamental mathematical and physical theory underlying computational climate modeling is 

not based on probability distributions, but rather comprises a set of deterministic nonlinear partial 

differential equations describing large-scale atmospheric dynamics. However, due to incomplete 

knowledge of other physical processes and differences in ways to represent them numerically, multiple 

climate models have been developed around the world and are currently in use, each reflecting different 

but credible choices in model design and implementation. Existing models yield different projections of 

the global climate even with broadly-harmonized input assumptions. Put differently, neither a 

“consensus” climate model nor quantitative climate projections can be definitively specified with current 

knowledge. These inter-model differences are referred to as reflecting “structural” uncertainty. We show 

how this can be framed in terms of partial identification or deep uncertainty. 

 This paper applies partial-identification thinking to climate modeling in two ways. First, we argue on 

decision-theoretic grounds against the prevalent practice in climate modeling of computing simple or 

weighted averages of predictions across models considered in MME analysis. Computation of simple 

averages of predictions assumes that equal weight should be given to each model, an assumption lacking 

a compelling foundation (2). But determining appropriate weights is challenging, for reasons including 

the weak link between metrics of model validity and predictive skill (1). Some researchers have attempted 

to motivate computation of weighted averages as an exercise in Bayesian judgment, the weights 

expressing subjective probabilities that particular models represent truth (3). However, it may be difficult 

to judge the credibility of the subjective probability distribution used. Rather than compute averages of, or 
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assigning probability distributions to, predictions across models, partial identification analysis would 

present the set of predictions yielded by model ensembles as the starting point for decision-making, 

foregoing an attempt to reduce the set to a point through averaging. 

 Second, we use classical ideas in decision theory to show how these ensemble outputs can be applied 

directly in policy applications of climate modeling, specifically the min-max (4) and min-max regret (5) 

decision rules. In decision problems in general, min-max reflects the principle of preparing for the worst 

case. In the climate context, it would entail making policy decisions, such as carbon abatement levels, 

using the most “pessimistic” climate model in an ensemble – the one projecting the highest temperature 

changes. Min-max regret (MMR) uses multi-model information in a more nuanced way. If a climate 

policy maker selects one model from an ensemble and chooses, say, an emissions abatement path that is 

optimal for that model according to some economic metric, the economic penalty, or regret, is the excess 

cost of that abatement path if a different model is actually the correct one. That is, regret measures the 

potential sub-optimality of policies relative to climate models. The MMR rule is to choose a policy that 

minimizes the maximum regret, or largest degree of sub-optimality, across the climate model ensemble.
 †
  

MMR has been applied in several policy areas, including criminal justice (6) and public health 

(7). It has been used in computational modeling of energy and climate policy in a number of studies (8-

12). (Cai (13) reviews this research). The present paper complements this previous work in several ways. 

The paper is aimed in part at climate modelers and other researchers who are non-specialists in economics 

but interested in the policy applications of climate modeling. Our approach is primarily conceptual rather 

than computational. We emphasize the partial identification paradigm and its suitability for framing 

structural uncertainty in climate models. We provide a theoretical discussion of MMR for climate policy, 

to highlight the basic idea in non-computational form. We then present a deliberately simple numerical 

integrated assessment example of MMR applied to carbon abatement policy, in order to illustrate the 

method in a transparent way.  

                                                           
†
 The other primary approach to studying climate model uncertainty is Perturbed Physics Ensemble (PPE) analysis 

of parametric uncertainty. Mutatis mutandis, the concepts and methods discussed in this paper can also be applied to 

understanding PPEs from a decision perspective. 
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 In what follows, Section 2 discusses the theory of partial identification as developed in econometrics 

and describes how climate model uncertainties can be framed in this way. Section 3 discusses technical 

aspects of structural uncertainties in climate modeling as a partial identification problem. Section 4 turns 

to decision-making under partial identification, providing background and discussing the min-max and 

min-max regret decision rules. Section 5 develops a numerical example illustrating their application to the 

problem of choosing dynamic carbon abatement policies that optimally balance abatement costs and 

climate economic damages.  The paper ends with a summary and concluding remarks. 

 

2. Partial Identification in Econometrics and Climate Modeling 

 Econometrics is the term used by economists to describe study of the logic of empirical inference.  

Whatever the field of science may be, the logic of empirical inference is summarized by the relationship: 

assumptions + data → conclusions. Data alone do not suffice to draw useful conclusions. Inference 

requires assumptions that relate the data to a question of interest. Holding fixed the available data, a 

fundamental difficulty of empirical research is deciding what assumptions to maintain. 

 

2.1. Identification and Statistical Inference 

Economists and many other researchers use sample data to learn about theoretically unknown 

aspects of the mechanisms that govern stochastic systems. Empirical research confronts problems of 

statistical imprecision and identification problems. Statistical theory characterizes the inferences that can 

be drawn by observing a finite sample of outcomes generated by a system. Identification analysis studies 

inferential difficulties that persist even when sample size grows without bound. The distinction between 

identification and statistical inference, first formalized by Koopmans (14), has long been central to the 

field of econometrics. 

A simple example of statistical imprecision occurs when one observes a random sample of 

outcomes generated by a stationary system and uses this sample average to estimate the mean outcome 

that the system produces. Statisticians typically measure imprecision of the estimate by its variance, 



 

7 

 

which decreases to zero as sample size increases. The famous “Laws of Large Numbers” imply that 

imprecision vanishes as sample size increases to infinity. 

Identification problems encompass the spectrum of issues that are sometimes called non-sampling 

errors or data-quality problems. These issues cannot be resolved by amassing so-called “big data.” They 

may be mitigated by collecting better data, but not by merely collecting more data. 

A simple example of an identification problem is generated by measurement errors. Suppose that 

a stationary system generates a random sample of outcomes, but one observes these outcomes with error. 

Increasing sample size adds new observations, but it also yields further measurement errors. If one has 

incomplete knowledge of the process creating measurement errors and cannot collect better data that are 

error-free, one cannot precisely learn the system mean outcome as sample size increases to infinity. 

 

 2.2. Point and Partial Identification 

 For most of the twentieth century, econometricians studying inference commonly thought of 

identification as a binary event – a parameter of a model is either point-identified or it is not. Empirical 

researchers combined available data with assumptions that yield point identification and they reported 

point estimates of model parameters. Economists recognized that point identification often requires strong 

assumptions that are difficult to motivate, but they saw no other way to perform inference. 

 Yet there is enormous scope for fruitful inference using weaker and more credible assumptions that 

partially identify objects of interest. A parameter in a probabilistic model is partially identified if the 

sampling process and maintained assumptions reveal that the object lies in a set, called the identification 

region or identified set, that is smaller than the logical range of possibilities but larger than a single point. 

Sample estimates of partially identified objects generically are set-valued. 

To illustrate, suppose economic theory posits that there are positive parameters , ,a b  and c such that 

  .Y a c X b       Given a random sample of observations of pairs  ,X Y , the product d a c   

can be estimated by the method of least squares if it is known that ε has mean zero conditional on X. 
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Statistical imprecision regarding d vanishes as sample size increases. However, absent additional 

assumptions, all that can be inferred empirically about a  and c is that they lie in the set of all pairs of 

positive real numbers such that .a c d  That is, these parameters are partially identified, with the 

identification region defined by this identity. 

 Part of the modern literature on partial identification in econometrics focuses on the identification 

problems generated by imperfect data quality, including measurement error and missing data. Part focuses 

on identification of structural econometric models used to describe human behavior and interactions. 

Manski (15, 16), Tamer (17), and Molinari (18) provide in-depth reviews of the literature at different 

technical levels and with different emphases. Section 1 in the Supporting Information (SI) provides a brief 

history and some key references. 

 Whatever the specific subject under study, a common theme runs through the literature. One first 

asks what available data combined with relatively weak and highly credible assumptions reveal about the 

population of interest. One then studies the identifying power of stronger assumptions that still aim to 

retain acceptable credibility, keeping in mind a principle called (ref. 15, p. 1): 

 

The Law of Decreasing Credibility: The credibility of inference decreases with the strength of 

the assumptions maintained. 

 

This principle implies that researchers face a dilemma as they decide what assumptions to maintain: 

Stronger assumptions yield inferences that may be more powerful but less credible. 

 This approach to inference makes clear the conclusions one can draw in empirical research without 

imposing untenable assumptions. It establishes a domain of consensus among researchers who may hold 

disparate beliefs about what assumptions are appropriate. Partial identification analysis also makes plain 

the limits to credible inference. When identification regions turn out to be large, researchers should face 

up to the fact that the available data and acceptable assumptions do not support inferences as tight as they 

might like to achieve. 
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2.3. Partial Identification of Climate Models 

 One might think that econometrics and climate modeling are so different that econometric 

methodology would have little if any application to climate modeling. In this sub-section we explain why 

the ideas of partial identification do, in fact, apply to climate models and can serve to frame and interpret 

their uncertainties. 

 First, research in both domains faces broadly similar identification problems due to data 

imperfections. Climate data that might have been available in principle may have measurement errors or 

be missing in practice, especially data documenting climate dynamics prior to the existence of modern 

instrumentation. Moreover, climate data in counterfactual settings is unavailable in principle. We cannot 

observe what climate change would have occurred over the past century if the trajectory of anthropogenic 

GHG emissions had differed from its actual path. 

 Second, research in both domains faces the problem of modeling a complex system. The climate 

system comprises many different physical processes and mechanisms occurring at a range of spatial and 

temporal scales. Designing and implementing a climate model requires many choices regarding the 

underlying architecture, the methods of numerical approximation, solution technique, which physical 

processes to include as model components, and how to represent these processes (19). Climate model 

structural uncertainty arises from incomplete scientific understanding of physical phenomena, limitations 

of quality and quantity of empirical data available to fit models, and the need to make approximations for 

computational tractability. 

 With respect to underlying scientific principles, all general circulation models of the climate are 

based on a set of five deterministic equations governing atmospheric variables including temperature, 

pressure, humidity, and wind flow (20). These so-called “primitive equations” instantiate first-principle 

laws of physics; they include partial differential equations describing a form of the classical conservation 

laws of momentum, mass, and energy.   
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 However, the highly complex and nonlinear nature of the climate system makes it inevitable that the 

computational models used to represent it are subject to a degree of irreducible imprecision (21).  

Although the basic set of primitive equations is common across models in a theoretical sense, the exact 

way in which the equations are rendered in a particular model is subject to numerous practical choices of 

implementation, including choice of coordinate system, discretization approach, and numerical solutions. 

In addition, climate models differ in the details of which physical processes are selected for inclusion – 

i.e., the overall strategy used to simplify the climate into a tractable form for modeling – and how they are 

represented. The multiplicity of models and inter-model variations of the quantitative outputs they 

generate are generally referred to as reflecting “structural” uncertainty (22, 23, 24, 25).  

It is important to note that this is not an exhaustive description of uncertainty in climate modeling, 

nor would it be if parametric uncertainty were also taken into account. The factors just discussed are 

“known unknowns” – they have been explicitly determined to be sources of uncertainty. By contrast, 

“unknown unknowns” are also presumptively present – it cannot be assumed that the models encompass 

all physical processes affecting the climate to an extent that is policy relevant.  

 To summarize, the present state of science, modeling methods, and empirical knowledge are not such 

that the climate system can be uniquely represented in mathematical or computational form. Nor can 

climate dynamics be predicted deterministically or stochastically – one can only predict a range of 

possible trajectories (26). Thus, we see an underlying correspondence between econometric and climate 

models with respect to structural uncertainty, making the concept of partial identification applicable to 

climate modeling. 

 In the following sections we elaborate on this perspective and show how it can be applied to climate 

change-related policy decision-making. 

 

3. Partial identification and multi-model ensemble analysis 

 At the beginning of the paper we introduced the terminology of climate model “ensembles.” It is 

difficult to vary a given model’s components such as sub-grid process representations (much less 
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numerical integration schemes) to assess the effects of variations in structural components on the model’s 

performance. Thus, to quantify and analyze structural uncertainty, sets of models are run to study how the 

different structural choices across models affect the outputs across the set. This is “multi-model ensemble 

(MME)” analysis, which we discuss next.  

 

 3.1. MMEs background 

 MMEs are based on model intercomparison projects in which the characteristics and performance of 

individual and multiple models are analyzed. First conducted in the 1980s (27), such projects have since 

proliferated and greatly increased in scope and detail. Most MME analyses have been generated in the 

Coupled Model Intercomparison Project (CMIP), which began in the 1990s and has thus far completed 

five studies (28, 29). These studies examine the individual and collective ability of models to simulate the 

current and historical climate, analyze the factors driving model behavior and inter-model differences, 

and provide a means of assessing changes in model performance over time (30). 

 The performance of climate models in simulating present and past climate has been gauged by 

various metrics based on the mean squared error of differences between model outputs, or “fields,” and 

their observed counterparts, such as global mean temperature and precipitation (31). Comparison of 

model performance based on such metrics has been conducted using CMIP MMEs of historical 

simulations (32). 

 The CMIP and other intercomparison projects have been part of a substantial international research 

effort to develop and improve the models. Advances in computational hardware and software have also 

been critical. The models have been refined and improved in a number of ways, including the ability to 

simulate key aspects of the historical climate. 

 Nevertheless, there continue to be shortcomings in the models’ accuracy and precision (1). There are 

non-trivial biases and uncertainties in particular fields across models that have persisted through 

development cycles (33, 34, 35). As noted previously, structural uncertainty arises from the fact that 

theory and evidence do not completely constrain design and implementation choices such as which sub-
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grid processes to include, at what levels of detail. When assessing model performance in historical 

simulations, there are multiple model fields for which performance metrics can be defined and quantified, 

and modelers have not been able to develop a single metric that effectively captures all the dimensions of 

interest (24). Because the relative accuracies of different models can depend on which field is measured, 

it has not proven possible to unambiguously rank models with respect to performance or to identify a 

“best” model using historical climate information (31). The extent of structural uncertainty can be gauged 

by the fact that there are currently several dozen different modeling groups around the world, each 

running one or more versions of its own model (36). 

 Abramowitz et al. (37) take the view that different models can be thought of as representing different 

“working hypotheses” about how to best represent the details of the structure and dynamics of the 

climate. Parker (26) characterizes the climate modeling community’s acceptance of multiple, co-existing 

models as “model pluralism,” with different models seen as complementary. In the language of the 

present paper, the climate models are only partially identified.  

 

3.2. MME projections of future climate 

 Model pluralism has generally been maintained in MME studies of the future climate, in that the sets 

of models used in specific studies have usually been determined simply by which modeling teams choose 

to participate, a procedure Knutti (2) describes as “model democracy.” That available models are not 

assessed or screened for inclusion essentially reflects the unavailability of reliable, agreed-upon criteria 

for doing so: If ab initio structural uncertainty (partial identification) cannot be resolved through standard 

evaluation and performance intercomparison, there are no obvious grounds to omit particular models from 

climate projection studies. Nevertheless, some modelers and climate scientists believe that there are 

important shortcomings in model democracy for projective MME analysis (2). Developing better 

approaches has been the focus of considerable research on narrowing model selection criteria and/or 

finding ways of assessing candidate models according to some informational criterion. 
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 Most of this work is closely tied to, or part of, a broader long-term effort to address uncertainty in 

MMEs of future climate. A number of methods have been developed and applied to MME uncertainty 

quantification and analysis, virtually all of which involve combining MME outputs into single projected 

climate trajectories. There appear to be two primary reasons that this form of model combination 

predominates: Simple averaging across models can improve accuracy relative to individual models in 

historical simulations (38), and modelers perceive policy-makers as requiring single projections (as 

functions of individual GHG emissions scenarios) for use in decision-making (26). 

 Simple averaging reflects model democracy. Weighted averaging is sometimes performed when it is 

felt that models can be ranked with respect to relative accuracy in specific fields in historical simulations 

(even if not overall) (39). Thus, models may be weighted along particular dimensions of policy interest, 

and the results then averaged. 

 Expanding on this approach, numerous studies have quantified MME uncertainty and combined 

model projections by creating multi-model probability distributions across predictions of key variables 

such as global temperature, and by using them to compute mean trajectories. Bayesian techniques are one 

approach to doing this – e.g., Smith et al. (3) and Sexton et al. (40) – building in particular on the work of 

Tebaldi et al. (41, 42). 

 As this type of work has proceeded, climate modelers and scientists and others have recognized 

some persistent methodological problems in combining model projections (43, 1). Regarding the finding 

that model averages can improve upon the predictions of individual models, Manski (44, 45) has shown 

that this may be the consequence of a mathematical relationship rather than an empirical result.
‡
 Also, 

model performance with respect to specific fields in historical data has not been demonstrated to imply 

skill in predicting climate (46), weakening the case for this approach to weighting projections. 

 Other issues have to do with how relationships among the models, and the selection of model 

ensemble subsets from the entire set of extant models, affect the informational content and quality of the 

                                                           
‡
 Specifically, Jensen’s Inequality implies that when mean square error or another convex loss function is used to 

measure predictive accuracy, the accuracy of a simple or weighted mean prediction is algebraically better than the 

corresponding average accuracy of individual model predictions. 
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ensemble results. These topics have been framed in terms of the degrees or levels of model 

“independence” in ensembles, although the formal meaning of “independence” has not been clear. In 

particular, one should be wary of conceptualizing independence in statistical terms, in the absence of a 

probabilistic theory of model development.  As noted above, ensembles are typically assembled by 

convenience, in the sense that they are determined by the availability and interests of modelers. Thus, one 

cannot reasonably assert that any given ensemble is a random sample drawn from a population of 

potential models.  Nor can one reasonably assert that any given ensemble adequately expresses the full 

range of structural uncertainty in model projections (24). Indeed, it is not known how well the world’s 

complete set of existing climate models expresses the full range of uncertainty. 

 While it is inappropriate to conceptualize model independence in statistical terms, there may be good 

reason to think non-statistically about dependence across models. Modeling teams communicate with one 

another and they may, hence, influence the modeling choices that they collectively make.  In fact, some 

models share parts of their codes (47). 

 As discussed by Sanderson (1), researchers are actively working on ways to address these problems. 

However, combining climate model ensemble outputs into single projected trajectories of the future 

global climate remains a challenging and unresolved problem. In the following sections we discuss how 

viewing model structural uncertainty in terms of partial identification facilitates an alternative approach to 

using MME information in climate policy and decision-making.  

 

4.  Climate policy under partial identification: Cost-benefit analysis with the min-max and  

  min-max regret decision rules 

 

 The issues with standard approaches to defining and quantifying uncertainties in climate modeling 

that we have reviewed do not obviate the fact modeling is essential for developing policies to address the 

risks of global climate change. What is clearly the case, however, is that addressing uncertainties remains 

an open, and challenging, problem. Parker (48) observed that a primary rationale for using weighting or 

probability analysis to combine climate model outputs into single time paths of important variables 
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appears to be modelers’ perception that policy makers require uncertainty to be represented in this form to 

make decisions. In this section we show that, in fact, this is not the case, and that a partial identification 

framing of climate modeling opens the way to alternative methods for dealing with uncertainties in 

decision-making. We might say that these methods allow for single decisions to be made without needing 

single inputs from the models. 

Our departure point is climate model ensemble analysis, so the models discussed in the following 

sections express partial identification in terms of a discrete set of climate models. As noted earlier, our 

analysis does not encompass the full uncertainty inherent in numerical climate simulation. By its very 

nature decision analysis must explicitly specify possible “states of nature,” which list only known 

unknowns. Our goal is to advance understanding within that paradigm.  

 

4.1.   Economic uncertainty in integrated assessment modeling 

 Although not our focus in this paper, for the sake of context we begin with a brief discussion of 

uncertainty in the economic elements of quantitative climate policy analysis, which as a rule uses 

computational energy-economic or integrated assessment (IA) models. (This subject is discussed by 

Sanstad in (49)). These are, characteristically, long-run (century-scale or more) models of the global 

economy including the energy system and its role in economic production, and are applied to estimating 

the costs of policy-induced GHG emissions reductions. IA models incorporate reduced-form 

representations of the climate (or more generally, the carbon cycle) and its links to the economy, 

particularly the climatic effects of anthropogenic GHG emissions and in turn their effects on the 

economy.  

The development of integrated assessment models has enabled economic analysis of how the global 

climate and social systems interact with one another, which has played a critical role in the development 

of policies to reduce GHG emissions (50). IA models are subject to uncertainty not just in their 

representation of the climate but also in their economic assumptions (50). Examples arise in highly-

aggregated IA models in which the direct economic costs of climate change and those of GHC abatement 
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are both represented explicitly, so that trade-offs between emissions reduction and reduced climate 

change-induced economic losses can be assessed. The paradigmatic example is Nordhaus’s DICE 

(Dynamic Integrated Climate Economy) model, the most influential IA model of the last several decades 

(51).  

In DICE and models based on it, the economic losses from climate change are represented in terms 

of “damage functions” that give the decreases in world-wide output resulting from increases in mean 

global temperature, as a proportional reduction or in dollar terms. It is recognized that these functions 

have uncertain theoretical and empirical grounding (52).
§
  

Another feature of these models is dynamic optimization by a representative decision maker, which 

entails discounting to quantify the present value of future economic costs and benefits. The appropriate 

definition and magnitude of the discount rate is a long-standing issue in climate change economics and 

integrated assessment modeling (56 - 58). Controversy persists in part due to the fact that this is not only 

an empirical question but also a matter of theory and of ethics in regard to intergenerational equity (59). 

In addition to these issues, integrated assessment model estimates of the long-run costs of large-

scale GHG emissions abatement vary considerably, by some measures up to an order of magnitude (60). 

As evidenced by comparing these more recent estimates with examples from the 1990s (61), this 

uncertainty has persisted over several decades of model development  

While improving estimates of the economic impacts of climate change is an active area of research, 

uncertainty persists. Damage functions in aggregate models continue to be debated, and model-based 

abatement cost estimates continue to proliferate but are not converging. Because our focus is partial 

identification of climate models and its implications for decision-making, this paper limits formal analysis 

of economic uncertainties to sensitivity analysis with respect to the exogenous economic parameters 

                                                           
§
 Some of this work has focused on improving aggregate damage functions with respect to both aggregate-level 

evidence and functional forms (53). Moreover, it is also the case that aggregation per se is a major source of this 

type of uncertainty, and increasing attention is being paid to empirical, statistical estimation of spatially and 

sectorally disaggregated climate damages (54, 55).  
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governing abatement and damage costs. However, our decision framework can be readily applied to 

economic uncertainty.  

 

4.2.  A simple theoretical framework 

 In what follows, we consider climate policy from a cost-benefit perspective in the context of partial 

identification of climate models, in which emissions abatement policy is based on comparing the costs of 

reducing GHG emissions with the resulting benefit in terms of avoided climate change damages. The key 

consideration is that the decision-maker’s knowledge of these benefits is subject to uncertainty arising 

from the partial identification. We first develop an abstract theoretical framework and then, in the 

following section, implement it quantitatively using a simple integrated assessment model. 

 Let 𝐵𝑡 represent the state at time t  of a baseline energy-economic scenario, and let 𝐸𝑡
𝐵𝑡 be the 

corresponding baseline GHG emissions. Let 𝐴𝑡 be GHG abatement actions at time t  under some climate 

policy, measured in the same units as emissions, let 𝐶(𝐴𝑡) be their cost, and 𝐸𝑡
𝐴𝑡 be the resulting net 

emissions. In what follows, we will slightly abuse terminology by also referring to 𝐴𝑡 and 𝐸𝑡
𝐴𝑡 as “paths” 

or “trajectories.” We assume that abatement paths are chosen from some space of feasible paths.  

 Emissions paths are used as inputs to a climate model M. We focus on the global mean temperatures 

projected by M  as a function of these paths. Thus, let  ,tA

tT E M be the global mean temperature at time 

t  determined by the GHG trajectory 𝐸𝑡
𝐴𝑡 when it is simulated in the climate model M. Then a damage 

function – as discussed above – can be written as   ,tA

tD T E M .  

 

4.2.1.  Cost-benefit analysis 

4.2.1.1. The min-max decision rule 

 For an abatement path 𝐴𝑡 and climate model M, denote the associated total (abatement plus 

damages) cost at time t as ℂ(𝐴𝑡 , 𝑀)  ≡ 𝐶(𝐴𝑡) + 𝐷(𝑇(𝐸𝑡
𝐴𝑡 , 𝑀)). A policy-maker seeks to minimize the 
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present value of the cumulative cost over a planning horizon which, as is customary in the climate 

economics literature, we assume to be infinite. The cost-benefit climate policy problem given a particular 

climate model M is 

  
0

min , ,
t

t

t
A

A M e dt


   (1) 

where  is a discount rate. In this approach, the optimal 𝐴𝑡  is chosen with commitment at time zero – 

that is, it is not updated over time as new climate or cost information is obtained. As stated, (1) is a 

deterministic optimization problem that, under certain technical assumptions regarding the feasible 

abatement path space and the cost and damage functions, has a unique solution. We will assume that such 

conditions hold for the series of problems we describe. 

  Reflecting the discussion in Section 3, let M = {𝑀1, … , 𝑀𝑁} be a model ensemble. We amend the 

damage and cost function notations to ℂ(𝐴𝑡 , 𝑀𝑖) ≡ 𝐶(𝐴𝑡) + 𝐷(𝑇(𝐸𝑡
𝐴𝑡 , 𝑀𝑖), 𝑖 =  1, … , 𝑁. The 

hypothetical policy-maker now faces the problem of minimizing total cost while taking account of the 

model uncertainty. One way of approaching this problem is to assign a probability distribution or some 

other weighting scheme to M and minimize the expected cost. However, this strategy is unsatisfactory if 

one lacks a credible basis for assigning a distribution or weights. 

  Under a partial identification perspective, one alternative way to proceed is to apply the min-max 

decision rule, which can be characterized colloquially as “preparing for the worst.” Here, the “worst” is 

the model 𝑀𝑖 that results in the highest total abatement plus damage costs. Given an abatement path 𝐴𝑡 

and associated emissions path 𝐸𝑡
𝐴𝑡 the most costly outcome will correspond to the model that solves the 

problem 

  
0

max , .t

t i
i

A M e dt


   (2) 

This maximum cost will vary across possible abatement paths, and the min-max decision is to select the 

path that solves  
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0

min max , .
t

t

t i
A i

A M e dt


   (3) 

That is, the decision rule chooses the abatement policy that minimizes the total cost of abatement and 

damages under the most pessimistic assumption regarding the climate model.  

 

4.2.1.2. The min-max regret decision rule 

 Policies chosen using the min-max criterion are conservative by design. An alternative decision rule 

that is applicable under conditions of partial identification but is less conservative is called min-max 

regret, which Manski and Tetenov (62) characterizes as seeking uniformly near-optimal solutions to 

decision problems. For each model 𝑀𝑖 in the ensemble 𝐌 =  {𝑀1, … , 𝑀𝑁} let 

ℂ(𝐴𝑡, 𝑀𝑖) ≡ 𝐶(𝐴𝑡) + 𝐷(𝑇(𝐸𝑡
𝐴𝑡 , 𝑀𝑖)) be the associated time t cost with abatement and emissions paths 𝐴𝑡 

and 𝐸𝑡
𝐴𝑡 respectively. Let ; it MA

be the abatement path that solves the problem  

  
0

min , ,
t

t

t i
A

A M e dt




   (4) 

and ℂ∗(𝐴𝑡;𝑀𝑖

∗ , 𝑀𝑖) be the resulting minimum cost:  

    ;
0

, min , .
i

t

t

t M i t i
A

A M A M e dt


      (5) 

 (Note the change in notation: Previously,  ,t iA M was total cost at time t; now,  ; ,
it M iA M 

is 

total discounted cost, i.e., an integral.) Now consider any other feasible trajectory 𝐴𝑡 and its cost – not 

necessarily optimal – over the entire time horizon with 𝑀𝑖,  
0

, .t

t iA M e dt




  The regret 

 ,t iA M  associated with 𝐴𝑡 when climate model 𝑀𝑖 is used in determining damages is the difference 

between its cost and the cost of the optimal policy associated with 𝑀𝑖: 
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      ;
0

, , , .
i

t

t i t i t M iA M A M e dt A M


      (6) 

The regret is non-negative because  ; ,
it M iA M  is the minimum cost with 𝑀𝑖. Regret measures the 

sub-optimality of 𝐴𝑡 when temperature is determined by 𝑀𝑖. That is, it is the excess cost resulting from 

this abatement path relative to the minimal cost associated with this model. 

To apply the min-max regret rule, a decision-maker first considers each feasible abatement path 𝐴𝑡 

and finds the model version that maximizes regret as defined in Equation (6), solving the problem 

      ;
0

max , max , , .
i

i i

t

t i t i t M i
M M

A M A M e dt A M  


      (7) 

The min-max regret solution is then to find 𝐴𝑡 to solve the problem 

      ;
0

min max , min max , , .
i

t ti i

t

t i t i t M i
A AM M

A M A M e dt A M  


              (8) 

This discussion highlights the fact that, in any application, MMR requires an explicit criterion to 

measure the differences in social welfare between optimal and sub-optimal outcomes. For example, 

applying the technique to analyze policies that entail exogenously-set “caps” on GHG emissions would 

necessitate measurement of the social cost of exceeding those caps.    

5.  A numerical example 

 

 In this section we describe a computational implementation of the min-max regret (MMR) 

framework described above. We present a simple integrated assessment model defining an optimal 

control problem that formalizes the dynamic economic trade-off between emissions abatement and 

reduced damages from emissions-caused temperature increases. We also contrast the results of applying 

the MMR criterion with those obtained with the min-max decision rule.
**

 

                                                           
**

 Our model is similar to that of Goulder and Mathai (63), which was adapted to min-max regret analysis of carbon 

abatement policy by Cai and Sanstad (11). Rezai and van der Ploeg (12) developed a more complex integrated 
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5.1. A simple integrated assessment model 

5.1.1. Emissions and temperature 

 In the previous section we represented the link between carbon emissions, in the form of a trajectory 

𝐸𝑡
𝐴𝑡, and projected global mean temperature 𝑇𝑡 , as a functional relationship based on a climate model M:

 , ,tA

t tT T E M where 𝐸𝑡
𝐴𝑡 are net emissions at time t when baseline emissions 𝐵𝑡 are reduced by 

abatement 𝐴𝑡, and are used to project temperature using M. For quantitative analysis, we now simplify 

this representation by adapting the approach of Matthews et al. (64) to summarize the long-term 

relationship between aggregate carbon emissions and global mean temperature. Using a combination of 

modeling and observational data analysis, these researchers showed that the ratio of temperature increase 

to cumulative emissions, the “carbon-climate response (CCR),” is roughly constant over decades up to 

several centuries. We use the CCR to capture the influence of emissions on temperature. (This approach is 

further discussed in NAS (65) and Cline (66). 

 Let 𝐄𝑡
𝐴𝑡 be cumulative emissions between an initial time 0 and time t given a net emissions path 𝐸𝑡

𝐴𝑡 

 

0

.t s

t

A A

t sE ds E  (9) 

Let m(M) be the CCR associated with a climate model M. Then the Matthews et al. approximation of 

global mean temperature projected by M when it is driven by 𝐸𝑡
𝐴𝑡 is 

 

 

   
0

,

.

t

s t

A

t t

t

A A

s t

T T E M

m M E ds m M



  E
 (10) 

 Slightly amending our notation from the previous section, we will use the parameter m to 

characterize the models being compared.  Different models might in principle have the same m, but this is 

                                                                                                                                                                                           
assessment model and applied it to max-min and min-max regret analysis of climate analysis under uncertainty, 

using temperature projections from several different IA models. 
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not the case for the six we examine here.  Thus, we can write the model-projected temperature as 

 ,tA

t tT T E m .  

 

5.1.2. Costs and damages 

 We assume that the functions for abatement cost and climate damage at time t are quadratic: 

 

 

   

2

2
2 2

1

2

1 1
) .

2 2
t t

t t

A A

t t t

C A A

D T m m



 



 E (E

 (11) 

The quadratic is a convenient and tractable functional form; in the present case, it enables us to solve our 

optimization model in closed form (see below). The shape of the damage function has been controversial 

in climate economics. Nordhaus and Moffat (53) conducted a comprehensive survey of empirical damage 

estimates in the literature and conducted their own estimations; their preferred specification was 

quadratic.  

With  , ,t tA A

t t tT T E m m  E the total cost at time t is  

 

      
2 2 2

, ,

1 1
) .

2 2

t

t

A

t t t

A

t t

A m C A D T E m

A m 

 

  (E
 (12) 

 

5.1.3. Optimization 

 In the abstract framework of Section 4.2, any constraints that might be imposed on the optimizations 

were implicit. In optimal control problems, the key type of constraint specifies the dynamic relationship 

between the decision variable and the “state” variable – here 𝐄𝑡
𝐴𝑡 ‒ as an ordinary differential equation. 

We write the cost-minimization problem for a given climate model as  
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t t

A

A T e dt

d
E B A

dt

T m

 




  







E

E

E E

  (13) 

where the last expression defines an initial condition for cumulative emissions. Solving (13) yields the 

abatement path ,t mA
 that minimizes the present (discounted) values of abatement costs plus climate 

damages subject to the relationships among emissions, temperature, and damages. Conceptually, this path 

makes the optimal trade-off over time between abatement and damages.  

 

5.2. Calibration 

5.2.1. Baseline emissions projection 

 We created our baseline emissions path using the “Representative Concentration Pathway (RCP) 

8.5” of carbon and other emissions and atmospheric concentrations created by integrated assessment 

modelers circa 2010 (67). It is one of four such scenarios, each corresponding to a different level of global 

average watts per meter squared in 2100 that was projected in one or more IAMs (68, 69). The 8.5 

watts/meter-squared pathway is the highest-warming of the RCPs, reflecting a pessimistic scenario 

regarding the increase in global emissions over the 21
st
 century; it has been used as a baseline in 

numerous studies.  

 We used the RCP 8.5 projection of annual carbon emissions (fossil and land use sources) from 2000 

to 2500 in gigatons of carbon (GtC), obtained from the RCP repository at the Potsdam Institute for 

Climate Impact Research.
††

 For a baseline emissions path approximating the projection, we fitted the 

following functional form to these data: 

                                                           
††

 http://www.pik-potsdam.de/~mmalte/rcps/.  
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 (14) 

where 𝐵0 is 8 GtC, the RCP 8.5 emissions in 2000. The fitted parameter values are 𝜃 = 0.0123125 and  

𝜑 = 339.565. Further details are provided in SI Section 2.  

 

5.2.2. Temperature projections under structural uncertainty 

 To calibrate temperature as a function of cumulative emissions for structural uncertainty analysis, we 

used outputs of six earth system models (ESMs) from CMIP5 that each projected the effects of RCP 8.5.  

We first computed decadal averages of the CMIP5-reported monthly surface air temperature projections 

from these models under RCP 8.5 for the period 1900-1909 to 2090-2099. Following Matthews et al. (64) 

as described above, we then calculated decade-by-decade temperature increases over this period relative 

to 1900-1909 as projected by each ESM, along with the corresponding decade-by-decade increases in 

cumulative carbon emissions in RCP 8.5. Extending the notation introduced above, denote the latter 

quantity as .tB

CumE  

 For each ESM, indexed by i = 1,…,6, we represented the relationship between temperature and 

cumulative net emissions as                 

  

 .tB

i i CumT m E  (15) 

  

To estimate the 𝑚𝑖 's we fitted (15) to the decadal average time series for each model.  See SI Section 2 

for details.   

         The six models and fitted values of 𝑚𝑖 are shown in Table 1. The range among these estimates is a 

simple gauge of structural uncertainty.  
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TABLE 1 HERE 

5.2.3. Economic parameters 

 We derived low, median, and high estimates of the abatement cost parameter α from Dietz and 

Venmans (70), who summarized global marginal abatement costs as a percent of global economic output 

as documented in the IPCC Fifth Assessment Report. Because these costs were derived from energy- 

economic and integrated assessment model analyses that assumed a 5% discount rate, we used this value 

exclusively. For the central value of the damage cost parameter β we used Nordhaus’s and Moffat’s (53) 

central estimate from their preferred (quadratic) specification and estimation of the climate damage 

function.  We also specified low and high values for sensitivity analysis. The values for these parameters 

are presented in Table 2.  

TABLE 2 HERE 

 

5.3 Analytical and numerical solutions  

Using standard methods, the model is solved in closed form analytically and the numerical solution 

is computed using the Mathematica (71) software; details are presented in SI Section 3. The results are 

optimal abatement paths ; it mA
 and minimum costs 
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 (16) 

subject to the constraints in (13).
‡‡

 Details are presented in SI Section 3.   

 

5.4. Min-Max Regret under structural uncertainty  

                                                           
‡‡ Under our assumptions, the necessary conditions are also sufficient, and the model will have unique solutions 

with the parameters we use.  
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 We begin with an example of how regrets are calculated, in the case that FIO is the correct model 

and with the median and central values of α and β, respectively. Our analysis assumes that the state space 

of possible real worlds includes only those represented by the six models.  That is, it excludes the 

possibility that all six models are wrong.  In principle, the calculations could be done with a larger state 

space that has more distinct models. However, we reiterate the point made earlier: No finite ensemble can 

enable analysis of the “unknown unknowns” of climate modeling. 

 The first row of Table 3 shows   ; , , 1, ,6,
it m iA m i    the minimum total discounted abatement 

costs plus climate damages, associated with the optimal trajectory ; it mA
 for each model for the median α 

and central β parameter case. We assign the indices i in the order in which the models are listed in Table 

1; that is according to ascending values of the CCR parameter. 

 To explain the second row, we recall the idea of a sub-optimal trajectory from Section 4.3, here 

assuming for the sake of discussion that FIO (i = 3) is the correct model. For legibility, we again amend 

our previous notation: Let , 3t iA

  be the optimal trajectory for one of the models other than FIO and

 , 3t iE A


be the net emissions at time t when this trajectory is used to reduce emissions from the baseline 

𝐵𝑡, i.e.,  , 3 , 3.t i t t iE A B A 

    We write the resulting cumulative emissions path as 
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Now consider using this emissions path to project temperature with the FIO CCR, 𝑚3: 
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That is,  3 , 3t t t iT m A

 E  is the temperature path when the optimal trajectory for a different model is used 

with the FIO CCR. In turn, we calculate the time t abatement costs associated with , 3t iA

  and climate 

damages associated with  3 , 3 :t t im A

E  
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The present value of these costs is then  

 

        

    

, 3 3 , 3 , 3

0

22
2

, 3 3 , 3

0

,

1 1
.

2 2

s

PV t i s i s i

s

s i s s i

A m C A D T E A e

A m A e



 



   

  



  

 

 

 
  

 



 E

 (20) 

Equation (20) displays the sub-optimality we have referred to: It is a cost, but not the optimal cost, using 

the FIO model to project temperature. These sub-optimal costs for the models 1,2,4,5,6i   comprise 

the second row of Table 3. 

 

TABLE 3 HERE 

 

The last row of the Table presents the associated regrets, the differences between the sub-optimal costs 

and the optimal (minimum) cost with the FIO model: 

      
3, 3 3 , 3 3 , 3, , , ,t i PV t i t mA m A m A m   

                                         (21) 

for i = 1,2,4,5,6. As discussed in Section 4.3, these are the post hoc losses when a decision-maker 

implements the optimal abatement policy assuming that one of the models other than FIO is correct, but 

FIO is in fact the correct model.  

The full set of regrets across the six models for the median α and central β case is shown in Table 4:  
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      , , ,, , , ,
jt i j j PV t i j j t m jA m A m A m   

     

, 1, ,6.i j  The rows are regrets with respect to the models listed at the left, with the FIO row values 

equal to those in the last line of Table 3. For example, the number in the second row, fourth column 

(0.01266) is the regret from using the Hadley model to perform the optimization when the correct model 

is the BCC. The min-max regret (MMR) solution across entire the table is in shown bold italics, and 

occurs when FIO is the correct model and MIROC used instead for the optimization.  

TABLE 4 HERE 

 

 Note that the values in each row form a “U” shape with respect to the zero value for the correct 

model for the row.  In the rows with the three lowest CCRs – GFDL, BCC, and FIO – the maximum 

regret occurs with the MIROC model, while for the rows with the three highest CCRs – Had, IPSL, and 

MIROC – it occurs with the GFDL. This is intuitive given the relative magnitudes of the various CCRs. 

 This calculation of the MMR solution assumes that the action space (that is, the set of feasible 

abatement paths) includes only the six abatement paths that are optimal under one of the models. Thus, it 

takes the action space to be the set of “best response” paths.  More generally, society could consider 

abatement paths that are not optimal under any of the six models.  Even if the state space comprises only 

the six models, it is possible that the MMR path will be one that is not optimal in any state.  Thus, Table 4 

gives a constrained MMR solution.  Finding the unconstrained MMR abatement path would be a much 

more complex computational problem. 

 To explore the sensitivity of the MMR to the economic parameters, we calculated nine tables for the 

nine α, β   pairs. Table 5 summarizes the results, showing the MMR for each combination of α and β.  For 

all these parameter pairs the MMR occurs with FIO as the model selected for optimization and MIROC as 

the incorrect model. 

TABLE 5 HERE 
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It is interesting to see that the MMR is increasing in β for each value of α, that is, the greater the 

sensitivity of climate damages to cumulative carbon, the greater the regret for using an incorrect ESM. 

The MMR is also increasing in α for the central and high values of  β, but not for the low value. 

 A sensitivity analysis of the model with respect to the economic parameters is presented in SI 

Section 3; its results and the data in Table 4 allow us to compare the MMR and min-max decision rule 

outcomes. The sensitivity analysis shows that the MIROC model yields the highest cost optimal solution 

for all α, β pairs – that is, if MIROC correctly embodies the CCR, the outcome is the worst using our 

optimization model.  It is natural to ask, what will the cost turn out to be if MIROC is correct, but another 

model is chosen? The answer is of course the set of regrets associated with MIROC. Comparing the 

MIROC and FIO rows in Table 4, we see that the MIROC regrets are in some cases higher and in some 

cases lower than those for FIO.  But its maximum regret (0.06558, when GFDL is chosen but MIROC is 

correct) is greater than FIO’s maximum regret (0.01749). The difference between the two can be 

interpreted as the potential cost of using the min-max rather than the MMR decision rule with this 

optimization model. 

 

 

6. Conclusion 

 

  Computational climate modeling is a challenging endeavor. Over decades, the efforts of many 

modelers around the world have yielded steady progress in model development. The models enable 

policy-makers to analyze the long-range consequences of societal decisions about energy production and 

use. However, the complexities of the climate system and computational difficulties generate structural 

uncertainty. A consequence is that a number of distinct models have been developed over time and are 

currently in use,  

Taking account of this uncertainty in integrated assessment modeling and other policy applications 

has with few exceptions relied on climate model weighting of one kind or another, including Bayesian 
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probabilistic analysis. The shortcomings of these weighting schemes are known and well-documented in 

the technical literature. As an alternative, we have proposed a partial identification framing and cost-

benefit analysis of climate policy using the min-max regret criterion. We have provided a theoretical 

treatment of min-max regret decision-making under structural uncertainty, and a simple numerical 

integrated assessment example. The min-max regret criterion offers a rationally grounded way to deal 

with structural uncertainty, and our results establish that the partial identification approach is a promising 

avenue for further development of computational modeling for climate policy. 

There are several ways this work could be extended. MMR analysis of joint parametric and structural 

climate model uncertainty could be conducted by explicitly distinguishing the two in the link between 

cumulative emissions and temperature. Of particular interest is MMR analysis of the types of economic 

uncertainties we discussed, both in their own right and jointly with climate model uncertainty. Such 

research could greatly enhance the capacity of decision-makers to address this most challenging of 

environmental problems. 
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Table 1. Carbon-climate response estimates – six earth system models,  

CMIP5 temperature projections under RCP 8.5 

 

Earth system model 
Fitted  𝒎𝒊  under RCP 8.5 (degrees Celsius per 

teraton carbon) 

GFDL-ESM-2G - Geophysical Fluid Dynamics 

Laboratory Earth System Model version 2G 
1.573 

BCC-CSM-1 - Beijing Climate Center Climate 

System Model version 1.1 
1.864 

FIO-ESM - FIO-ESM - First Institute of 

Oceanography Earth System Model 
1.937 

Had-GEM2-ES - Hadley Global Environmental 

Model 2 - Earth System 
2.286 

IPSL-CM5A-MR - Institut Pierre Simon Laplace 

Coupled Model 5A - Medium Resolution 
2.361 

MIROC-ESM - Model for Interdisciplinary 

Research on Climate - Earth System Model 
2.438 
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Table 2. Values of economic parameters used for calibration 

 

Abatement cost parameter α 

(Fractional GDP lost per GtC 

abated) 

Climate damage cost parameter β 

(Fractional GDP loss per degrees Celsius 

increase) 

Low 0.000078      Low 0.014 

Median 0.000125 
   Central (Nordhaus 

 & Moffat 2017) 
0.018 

High 0.0002      High 0.022 
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Table 3.  Example of regrets calculation – with FIO the correct model,  

median α and central β 

 
Model 

Calculations GFDL BCC FIO Had IPSL MIROC 

Optimal values for each model  

(assuming it is correct) 
0.293 0.381 0.4029 0.509 0.531 0.554 

Sub-optimal values (if other models’ optimal 

paths are used but FIO is the correct model)  
0.413 0.4033 - 0.412 0.416 0.420 

Regrets: Sub-optimal values  

minus FIO optimum 
0.01059 0.0004 0 0.0088 0.01274 0.01749 
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Table 4. Values of regret across six ESMs, median α and central β,  

including Min-Max Regret solution (in bold italics) 

 INCORRECT MODEL (COLUMN)  

CORRECT 

MODEL 

(ROW) 

GFDL BCC FIO Had IPSL MIROC 
Row 

maxima 

GFDL 0 0.00608 0.00939 0.03436 0.04137 0.04914 0.04914 

BCC 0.00669 0 0.00039 0.01266 0.01726 0.02266 0.02266 

FIO 0.01059 0.0004 0 0.0088 0.01274 0.01749 0.01749 

Had 0.04357 0.01459 0.0099 0 0.00041 0.00166 0.04357 

IPSL 0.05379 0.0204 0.0147 0.00042 0 0.00043 0.05379 

MIROC 0.06558 0.02748 0.02071 0.00175 0.00044 0 0.06558 
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Table 5. Values of Min-Max Regret among six climate models across  

economic parameters (from the FIO/MIROC model pair in each case) 

 Value of β 

 Low Central High 

Value of α    

Low 0.01300  0.01538  0.01719 

Median 0.01387 0.01749 0.02053 

High 0.01312 0.01763 0.02179 
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1.  Research on Partial Identification 

1.1.  Partial Identification Due to Imperfect Data 

 A large body of research on partial identification has studied the inferential problems created by 

imperfect data, where imperfection can mean measurement error or missing data. Obtaining larger 

samples does not resolve these inferential problems. Measurement error and missing data generate 

identification problems, not merely statistical imprecision. 

 Notable early studies of partial identification with measurement error include (1) and (2). They 

derived sharp bounds on the slope parameter of a simple linear regressions with errors-in-variables; that 

is, white-noise measurement error in the outcome and covariate. These early findings were later extended 

to multiple linear regression by (3). More recent work on partial identification with measurement error 

has studied nonparametric inference with contaminated and corrupted sampling (4) and misclassification 

(5) rather than white-noise error. 

 Another notable early subject of study was use of knowledge of the marginal distribution of each 

element of a vector of random variables to partially identify the joint probability distribution of the vector 

or conditional distributions (6). See (7) and (8) respectively for more recent contributions to these 

subjects. In this body of work, the data imperfection is that one can observe each element of a vector in 

isolation from one another, but one lacks data on the vector in totality. 

 A prominent concern of econometricians has been partial identification with missing data. Early on, 

(9) suggested conservative analysis of surveys with missing data due to nonresponse by sample members, 

informally distinguishing between identification problems and those of statistical inference.  Manski (10) 

initiated formal analysis of partial identification with missing data, determining what can be concluded 

about a population mean and distribution function if nothing is known about the missingness process. 

Many subsequent contributions have studied partial identification of various population parameters given 

alternative assumptions about the missingness process. Manski (11, 12) provides monograph and 

textbook expositions of this body of work. 

 Consideration of missing data problems has led to a large literature studying partial identification of 

treatment response, beginning with (13). Again, (11, 12) give monograph and textbook expositions of the 

ensuing literature. Analysis of treatment response poses a distinctive problem of missing outcome data. 

Studies of treatment response aim to predict the outcomes that would occur if counterfactual treatment 

rules were applied to a population. Treatments are mutually exclusive, so one cannot observe the 

outcomes that a person would experience under all treatments. At most, one can observe the outcome that 

a person experiences under the treatment he actually receives. The counterfactual outcomes that a person 

would have experienced under other treatments are logically unobservable. 

 

1.2 Partial Identification of Structural Econometric Models 

 Structural econometric models place assumptions on the behavior of economic agents (consumers, 

firms, or governments) and on the ways that they interact with one another. These assumptions are 

combined with data on observed behavior and interactions to estimate model parameters. Estimated 

models are used to predict the choices that agents would make and the interactions that would occur in 

counterfactual settings.  Particularly prominent are applications of the models to predict economic 

outcomes under counterfactual public policies. 

 A classic example is analysis of competitive markets. Economists assume that firm and consumer 

behavior are expressed by supply and demand functions. They restrict the heterogeneity of behavior 

across by markets through functional form assumptions (e.g., linear supply and demand) and 

distributional assumptions (e.g., mean independence involving so-called instrumental variables). They 

assume that observed transactions are market equilibria. Estimated models are used to predict the 

transactions that would occur in counterfactual settings, such as under counterfactual tax and subsidy 

policies. 
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 The traditional practice of applied econometrics has been to make assumptions that are strong 

enough to yield point identification of structural models when the assumptions are combined with data on 

the observable behavior of the relevant economic agents. However, the assumptions imposed are often 

criticized for lacking credibility. 

 Studies of partial identification of structural models investigate inference under weaker assumptions 

that may be more credible. Given such assumptions, findings distinguish models that are consistent with 

available data from those that are not. Thus, one narrows the scope of scientific inquiry to a set of feasible 

models, but one does not claim to have found a unique best model. Having determined a set of feasible 

models, one may use each model to predict economic outcomes in counterfactual settings. The result is a 

set of predictions, one for each feasible model, rather than an exact prediction or a probability distribution 

of predictions. 

 Discussion of partial identification of structural econometric models occurred as early as the 1940s, 

but formal analysis is more recent. Manski (13) studied partial identification of the market demand for a 

good when data on transactions are combined with the weak and credible assumption that demand 

decreases as price rises. Haile and Tamer (14) studied partial identification of the bidding rules used by 

participants in auctions when data on observed bids are combined with weak and credible assumptions on 

bidding behavior. Ciliberto and Tamer (15) studied partial identification of the rules that oligopolistic 

airlines use to decide whether to initiate service between specific city pairs. Manski (16, 17) studied 

partial identification of discrete choice models in generality and of labor supply models in particular. 

Barseghyan, Molinari, and Teitelbaum (18) studied partial identification of the decision rules that 

households use to make insurance purchases. 

 Studies of partial identification of structural econometric models build on the literature on partial 

identification due to imperfect data. In general, the data available for structural modeling suffers from 

measurement error and missingness. A fundamental missing data problem is that one can only observe the 

historical behavior of economic agents under the policies that existed at the time. The counterfactual 

choices that agents would have made under other policies are logically unobservable. Thus, research on 

structural models faces the same missing data problem that arises in analysis of treatment response. 

 

2.  Calibration 

2.1.  Fitting a Functional Form to RCP 8.5 

The exogenous baseline emissions projection Bt driving the results of the model is the Representative 

Concentration Pathway (RCP) 8.5 (see main body of the text). The functional form fitted to this emissions 

path is given by equation (14) in the text, reproduced here as equation SI.2.1: 

 
  0 exp

exp
t

B
B t t  


   
 
 
 

                                                               (SI.2.1) 

We used Mathematica's "NonlinearModelFit" procedure specifying the Levenberg-Marquardt method 

(19, 20, 21).  Both RCP 8.5 and the fitted version of (SI.2.1) are shown in Fig. S1. 

We make no claim about any statistical properties of this curve-fitting.  Our objective was solely to 

obtain a functional form that is analytically tractable and closely resembles the projected emissions 

pathway.  Equation (SI.2.1) with the fitted parameters shown in the main text accomplishes this; the 

adjusted R
2
 measure of goodness of fit is 0.927 and the fitted function exhibits the same pattern of rising 

and then falling gross emissions shown by RCP 8.5.   
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2.2. Temperature data 

To estimate the simple carbon-climate response model described in Section 5.2 of the main text, we 

adapted the CMIP5 variable “tas” – near surface air temperature in Kelvin (“CMIP5 PCMDI 

standard_output.pdf,” p. 19, table “CMOR Table Amon: Monthly Mean Atmospheric Fields and some 

Surface Fields,” https://pcmdi.llnl.gov/mips/cmip5/docs/standard_output.pdf?id=54). The model output 

was generously provided by the research group of Professor Elizabeth Moyer, Department of 

Geosciences, University of Chicago. We used the projections of this variable generated by the CMIP5 

earth systems models (ESMs) listed in Section 5.2. As noted there, these observations were averaged into 

decades starting in 1900 and ending at 2100. Information on the models, including technical references, 

can be found in (22).  

 

2.3.   Comparisons of Actual and Fitted Values of Temperature, Equation (15) of Main Text, Six 

Models Separately (Fig. S2a-f) and Together (Fig. S3). 

 

Actual and fitted values for each model were computed using EViews11 (23).  Each series for 

temperature and cumulative emissions had 19 observations (decadal averages), and the equation was 

fitted by least squares with no constant and an AR(1) process specified for the disturbance term. Fitting 

without specifying an autocorrelated error indicated a great deal of serial correlation of the residuals. 

While these estimates of the mi were not too different from those we report, our judgment was that it was 

best to fit equation (15) while removing most of the autocorrelation.  We make no statistical claims, but 

conventional measures were all indicative of a tight fit (R
2
 values greater than 0.99) and the inverted AR 

roots were less than one.   

 

3.  Model Solutions 

The current-value Hamiltonian of the simple model in Section 5 is  

 
2

21 1
( ),

2 2
tA

t t t t tA m B A     H E                                                                            (SI.3.1) 

where t  is an adjoint or co-state variable (a counterpart to the Lagrange multiplier in static 

optimization). The first-order necessary conditions are  
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The first two equations in (SI.3.2) can be re-arranged to yield 
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This is a two-dimensional system of linear, first-order, constant-coefficient ordinary differential 

equations, and can be solved in closed form with elementary methods: first a diagonalization procedure to 

uncouple the two equations, and second the use of an integrating factor to solve the resulting system in 

terms of exponential functions. Reversing the diagonalization and applying the initial and transversality 

conditions (the third and fourth lines in (SI.3.2)) then yields closed-form solutions for the optimal 

abatement path ; it mA
 and cumulative carbon emissions tA

tE for most values of , ,  and .m   

We obtained  numerical values of α and β from Figure 3, p. 113, of (24) using the Web Plot Digitizer 

software (https://automeris.io/WebPlotDigitizer/). 

We solved the system both by hand and using Mathematica's "DSolve" command.   We also used 

Mathematica to solve the optimal control problem:  Mathematica's "Integrate" command calculated the 

optimal values – minimum discounted abatement costs plus climate damages – as a function of the 

optimal solution paths  and .t tA E  We present these results in the next section for the values of 

, ,  and m  presented in the main text. 

For both analytical and numerical solutions there is general and a special case defined by particular 

combinations of parameters. Our parameter values reflect the general case, but the difference between the 

two raises certain computational issues that we discuss in Section 3.3 below.   

 

3.1. Numerical solutions 

Fig. S4 displays the optimal abatement paths over the 21
st
 century for each of the six ESMs as 

proxied by , 1, ,6,im i  for the median value of α and the central value of β.  Fig. S5 shows the 

corresponding optimal net emissions paths ( tA

t t tE B A  for each model) as well as the fitted baseline 

RCP 8.5 emissions path from equation (14) of the main text. The figures show that the optimal control 

model with our calibration finds fairly aggressive abatement to be optimal across the ESMs. They also 

show an inverse correspondence, as it were, between the geometry of these paths and the values of the 

CCRs: the higher the CCR, the greater is optimal abatement and the lower is optimal net emissions, with 

the spacing of the paths reflecting the relative differences among the numerical values of mi. 

Table S1 shows sensitivity of optimal (minimum) costs with respect to the low, middle, and high 

values of both α and β, for each value of .im  The results are as would be expected:  For each ,im  the 

optimal  cost is increasing in both α and β, conversely, for each  α, β  pair, it is increasing in .im  These 

results allow us to compare climate uncertainty and economic sensitivity in the calibrated simple model. 

In each row (corresponding to a value of im ), the lowest optimal cost is in the low , low   case, and 

the highest cost is in the high , high   case. The largest row range (highest value minus lowest value) is 

0.341, with the MIROC ESM. Conversely, in each column (representing an ,   pair), the lowest cost is 

the in first row – the GFDL model – and the highest in the last row – the MIROC model. The largest 

column range is 0.362, again with MIROC. That is, the magnitudes of climate uncertainty and economic 

sensitivity are roughly equivalent. This finding highlights the importance of taking account of both 

climate-model and economic uncertainty in quantitative studies of optimal carbon policy. 

  

https://automeris.io/WebPlotDigitizer/
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3.2.  Closed form analytical solutions 

 

3.2.1.  General case: 1 0    

Diagonalization of the system involves determining eigenvalues of the fundamental matrix  
2

.

1 0

m

M






 
 

 
  

                                                                                                             (SI.3.5) 

There are two, 1 2 and ,  which are negative and positive, respectively. We recall that the baseline 

emissions trajectory in our model is
 0 .
t

t

B
B t e

e

 




  
  
 

  The parameter condition for the general 

case arises in solving the diagonalized form of the equation for tA : 
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Multiplying both sides by the integrating factor 1te 
yields  
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and 
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When 1 0   , the right-hand side of the last equation of (SI.3.7) is 
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where 1C  is a constant. Substituting back into Equation (SI.3.7) and multiplying both sides by 1te
 yields 

the solution:  
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The solution for  2y t  is obtained analogously. 
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In this general case, returning to the original coordinates and setting 1C  using the initial condition 

for tE , the solutions to (SI.3.3) are of the form 

1

1

1 2 3

1 2 3

A A A

E E E ,
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where the sA '  and 'si iE  are algebraic expressions in the model parameters. 

3.2.2 Special case: 1 0    

The growth rates of the terms with 
te 
and 1te

are  and 1, respectively, and the growth rate of 

the terms with 
te t

 is  
1

ln ,td
e t

dt t

     i.e.,   asymptotically. Thus if 1+ 0,   these growth rates 

coincide as t → ∞. Given that the eigenvalues of the diagonalized system have opposite signs

 1 20 and 0 ,   it is saddle-path stable, with the stable arm corresponding to 1.  Thus, this special 

case amounts to the asymptotic growth rates equaling that along the stable arm of the system (25). 

This affects the solutions in a particular way. Specifically, if  1+ 0,    the diagonalized equation 

for tA is the same as for Equation (SI.3.6) above, but applying the integrating factor 1te 
yields 
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Note that there is no exponential term with time as an argument in the last expression. Therefore  
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and the solution to the differential equation is  
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because 1 0    in this case. The solution for  2y t  is obtained in a similar manner.   

In this special case, the solutions to the system in the original coordinates are of the form 
2

1 2 3
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A e t e t e

e t e t e

  

  

  

  

  

  E
                                                                                  (SI.3.14) 

where A 's and E 'sS S

i i  are again algebraic expressions in the model parameters. These coefficients are 

different from those in the general case, and the primary structural difference is the presence of the 

quadratic term. 
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3.3. Continuity of solutions in parameter space 

Given that the system parameters , ,  and m   can also vary, what we mean more precisely in the 

preceding discussion is that the condition 1 0    does or does not hold given any particular 

combination  , ,m  . The coefficient expressions in the solutions for the general case (Equation 

(SI.3.10)) contain the term 
 1

1
,

 
 which approaches infinity as   approaches 1  in parameter space. 

The eigenvalues 1 2 and    are functions of the model parameters , , ,  and ,m   and it can be shown that 

1 0    is equivalent to 

 
2

.
m 

  


                                                                                                               (SI.3.15) 

The parameters θ, φ, and  are fixed for all versions of the model (θ and φ from the fitted exogenous 

emissions path and   as the IPCC conventional value of 0.05). However, our model solutions were a 

function of m  corresponding to different climate models, and we conducted sensitivity analysis with 

respect to  and .   The difference between the general and special case solutions therefore raises a 

question of continuity as the parameters of the two solutions approach each other.  Using Mathematica we 

confirmed that the solutions at the parameter configuration (SI. 3.15) are limits of those at nearby points 

as the parameters approach (SI.3.15), so there is no discontinuity. However, there are additional 

considerations for numerical solutions, as we discuss next.   

 

3.4. Numerical stability issues. 

None of the numerical values used in the cases reported in the text used parameter values that lie 

exactly on the hypersurface in parameter space defined by (SI.3.15). However, this surface does divide 

the region in parameter space in which these values lie, and there are numerical issues in the transition 

between the two cases. Using the general solutions (SI.3.10) in calculations for parameter combinations 

that are very close to, but not on, the special case gave rise to numerical instabilities because of cumulated 

rounding errors and the intrinsic precision limits of machine computations.  Therefore, it is important to 

check whether any of the (α, β, m) parameter combinations used in the calculations reported in the text are 

close enough to satisfying (SI.3.15) that the special case solution needs to be employed rather than the 

general case in calculating the numerical results. In general, care needs to be taken in numerical 

implementation of the model to make sure that the correct solutions of the system are the ones employed.   

An illustration of the potential problem that could arise from using the general solutions if the 

parameters are too close to satisfying (SI.3.15) is shown in Fig. S6, a 2-D color plot of the optimal value 

of the objective function (equation (16) in the text) as a function of β and m.  The region with pixels of a 

color different from the yellow-to-gray shade (which represents values of the objective function) shows 

the region in which numerical instability is occurring. It can be seen that one of our parameter 

combinations, m = 0.00286 (Hadley) and β = 0.018 (Nordhaus and Moffat), lies fairly close to the region 

of numerical instability. 

To double-check that this parameter combination is far enough away from satisfying (SI.3.15) to be 

numerically stable we proceeded as follows. First, we calculated the 18 values of β for which (SI.3.15) is 

satisfied for the 18 combinations of α and m we used (three α's, six m's). These β's for each (α, m) pair are 

shown in Table S2.  We inspected this table to see which values of β in the Table appeared to be close to 

one of the β values used in our analysis.  For example, the value 0.0183465 associated with the median α 

and the Hadley m is fairly close to our central β of 0.018. Is it close enough that numerical instability 

might be a problem affecting the MMR calculations?   



 

48 

 

To answer this question, we narrowed down the range around the critical value 0.0183465 to see 

how close one has to be to this value for numerical instability to appear. We then plotted tA  and Et  for 

the range 0 ≤ t ≤ 1000 over ever-narrowing intervals around this critical value.  With increments of 

1/10,000,000,000, the plots for tA over the interval 0.01834649905 ≤ β ≤ 0.01834650395 are displayed in 

Fig. S7. (There were 50 incremental steps in this interval given the specified width of each step; the plots 

for Et are similar in appearance.)   

What is evident from this figure is that for the first 10 or so steps, the plots of tA  are smoothly well-

behaved. After that, the plots begin to get "fuzzy" as the β being used to calculate tA  gets closer to the 

critical value. From around step 16 through step 35, the numerical instability is more pronounced; 

beginning with step 22 the numerical calculation of tA  breaks down and even begins showing 

(theoretically impossible) negative values. 

By around step 40, the At function becomes well-behaved again, indicating that the value of β is far 

enough from the critical value that division by a number close enough to zero to cause numerical 

instability is no longer an issue.  Being very conservative, we can conclude that outside the interval, 

0.01834649905 ≤ β ≤ 0.01834650395, the solutions to the model are well-behaved when the general form 

of the solutions are used. The central value of β used in the calculations reported in the main body of the 

paper is 0.018, safely outside this interval.   

We did a similar analysis for another candidate for instability, β = 0.0241934, associated with the 

low α value of 0.000078 and the GFDL m of 0.001572749 and shown in Table S2.  This was the critical 

value closest to our high value of β, which was 0.022.  Again, the width of the interval of numerical 

instability around the critical β value was narrow enough that 0.022 was safely outside of it.  Other critical 

values of β shown in Table S2 are farther away from the values we used than the critical value  

0.01834649905 was.  We conclude that numerical instability is not a problem for any of the calculations 

reported in the main body of the paper which were based on the general solutions (SI.3.10). 
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Fig. S1.  RCP 8.5 and fitted equation (SI.2.1) 
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Fig. S2a.   GFDL Actual and Fitted 
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Fig. S2b.  BCC Actual and Fitted 
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Fig. S2c.  FIO Actual and Fitted 
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Fig. S2d.  Hadley Actual and Fitted 
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Fig. S2e.  IPSL Actual and Fitted 

  

(Kernel 2) Out[ ]=

IPSL Actual IPSL Fitted

2020 2040 2060 2080 2100 2120 2140 2160 2180

1

2

3

4

Year 

Temperature 



 

55 

 

 

 

 
Fig. S2f.  MIROC Actual and Fitted 
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Fig. S3.  Actual and Fitted Values from Equation (15), all six models 
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Fig. S5.  Baseline (uncontrolled) and net emissions, six ESMs, 2010-2100,  

α = 0.000125, β = 0.018 
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Fig. S6.:  2-D Color Plot of Objective Function,  

α  =  0.000125;  0.017 ≤ β ≤ 0.019;   0.002275 ≤ m ≤ 0.002290 
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Fig. S7.  Numerical instability test on  At, 

0.01834649905 ≤ β ≤ 0.01834650395, steps of width 1/10,000,000,000 
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Table S1.  Optimal (minimum) costs across values of economic parameters:  

Present values of abatement costs plus climate damages in optimal solutions. 

 

 β Value 

 Low Central High 

 α Value α Value α Value 

Model Low Median High Low Median High Low Median High 

GFDL-ESM-2G 0.217 0.262 0.301 0.239 0.293 0.343 0.256 0.318 0.377 

BCC-CSM1-1 0.279 0.331 0.378 0.315 0.381 0.441 0.343 0.423 0.496 

FIO-ESM 0.294 0.348 0.396 0.334 0.403 0.465 0.366 0.450 0.526 

Had GEM2-ES 0.367 0.429 0.482 0.427 0.509 0.581 0.479 0.582 0.675 

IPSL-CM5A-MR 0.382 0.445 0.500 0.447 0.531 0.605 0.504 0.610 0.706 

MIROC-ESM 0.398 0.462 0.518 0.468 0.554 0.630 0.530 0.640 0.739 
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Table S2.   β values for which (SI.3.15) is satisfied,  

m and α values used for calculations in text 

 

 
Model and associated m (columns) 

α (rows) 
GFDL 

0.001572749 

BCC 

0.00186463 

FIO 

0.001936724 

Hadley 

0.002286328 

IPSL 

0.00236084 

MIROC 

0.002437833 

0.000078 0.241934 0.0172119 0.0159544 0.114482 0.010737 0.0100695 

0.000125 0.0387714 0.0275832 0.0254579 0.0183465 0.0172067 0.0161370 

0.00020 0.0620342 0.0441332 0.0409086 0.0293544 0.0275307 0.0258192 
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